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Abstract. We consider the interaction of the partonic fluctuation of a scalar “photon” with an external
color field to calculate the leading and next-to-leading order gluon distribution of the proton following
the work done by Dosch–Hebecker–Metz–Pirner. We relate these gluon distributions to the short and
long distance behavior of the cross section of an adjoint dipole scattering off a proton. The leading order
result is a constant, while the next-to-leading order result shows a ln(1/x) enhancement at small x. To get
numerical results for the gluon distributions at the initial scale Q2

0 = 1.8 GeV2, we compute the adjoint
dipole–proton cross section in the loop–loop correlation model. Quark distributions at the same initial
scale are parameterized according to Regge theory. We evolve quark and gluon distributions to higher
Q2 values using the DGLAP equation and compute charm and proton structure functions in the small-x
region for different Q2 values.

1 Introduction

The understanding of deep inelastic scattering (DIS) in the
small-x regime remains one of the challenges in quantum
chromodynamics (QCD). Perturbative and non-perturba-
tive physics are important for a complete picture of the
small-x limit of the structure functions. In this work, we
combine perturbative and non-perturbative approaches to
describe charm and proton structure functions (or quark
and gluon distributions) in the small-x region.

The basic idea is the description of high-energy scat-
tering in QCD by studying the eikonalized interaction of
energetic partons with external color fields. In [1], this semi-
classical method has been compared with the parton model
to extract the leading order (LO) and next-to-leading order
(NLO) gluon distribution. The main idea is simple and goes
back to Mueller [2]. One calculates the gluon production
cross section for a scalar “photon”, which directly couples
to the gluon field, in an external color field. The calculation
of one-gluon production leads to the LO gluon distribution
and the one of two-gluon production to the NLO gluon
distribution. The LO result turns out to be a constant,
xg(0)(x,Q2) ∝ const., characterizing the averaged local
field strength in the proton. The NLO result shows a log-
arithmic increase at small x, xg(1)(x,Q2) ∝ ln(1/x), and
is sensitive to the large distance structure of the proton.
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In order to make numerical estimates for the gluon dis-
tributions, we relate the LO and NLO gluon distributions
to the scattering of a dipole in the adjoint representation
of SU(3) on a proton. Then, we use the loop–loop corre-
lation model (LLCM) [3] to compute this adjoint dipole–
proton cross section at the center of mass (CM) energy of√
s0 ≈ 20 GeV. The two gluons emerging from the scalar

“photon” represent the adjoint dipole and a fundamen-
tal quark–diquark dipole models the proton in the LLCM.
The correlation between the two dipoles given by Wegner–
Wilson loops is evaluated in the Gaussian approximation of
gluon field strengths. The perturbative interactions are ob-
tained from perturbation theory and the non-perturbative
gluon field strength correlator is parameterized in line with
simulations in the lattice QCD. The calculation of scatter-
ing cross sections in the loop–loop correlation model has
been quite successful at low energies,

√
s0 ≈ 20 GeV [3–7].

For small virtuality Q2, the perturbative wave function
of the two gluons emerging from the scalar “photon” is un-
realistically extended at the endpoints of the longitudinal
momentum fraction α = 0, 1. This problem is similar to
the quark–antiquark wave function of the transverse pho-
ton. The phenomenological solution we propose is to give
the gluon a constituent mass mG of the order of the rho
mass. This mass modifies the wave function at small trans-
verse gluon momenta k⊥, ensuring “confinement” for the
two gluons, but does not affect the perturbative part of
the two-gluon wave function at high k⊥.

We calculate the x-dependence of the gluon distribution
at a scale Q2

0 = 1.8 GeV2 which corresponds to the upper
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limit where the non-perturbative input is still credible. The
quark distributions at the same scale are parameterized in
line with Regge theory [8]. We evolve both distributions
to higher values of Q2 using DGLAP equations [9]. With
quark and gluon distributions, we compute charm and pro-
ton structure functions at small x for different Q2 values
in good agreement with experimental data.

The outline of this paper is as follows: In Sect. 2 we re-
view the formulas for the calculation of the LO and NLO
gluon distribution following [1], introduce a gluon mass into
the formalism and rewrite the final expressions for gluon
distributions in terms of adjoint dipole–proton cross sec-
tions. We compute the adjoint dipole–proton cross section
in the loop–loop correlation model in Sect. 3. In Sect. 4 we
determine the x-dependence of the quark distributions at
the initial scale Q2

0 according to Regge theory. The initial
gluon and quark distributions are evolved to higher virtual-
ities Q2 using the DGLAP equation. In Sect. 5 we present
the results for the charm and proton structure function
versus Bjorken variable x at different Q2 values. Finally,
in Sect. 6, we summarize our results.

2 The semi-classical gluon distribution

In this section we review the formulas for the computation
of the LO and NLO gluon distribution1 in the semiclassical
approach and parton model following the work by Dosch,
Hebecker, Metz and Pirner [1]. In addition, we introduce
a gluon mass in the formalism to take into account the
spatial localization of the two gluons due to confinement.
We derive the modifications due to massive gluons and
rewrite the final results for the gluon distributions in terms
of adjoint dipole–proton cross sections.

2.1 Gluon distribution at leading order

In order to extract the gluon distribution, we consider a
scalar field χ (or scalar “photon”) coupled directly to the
gluon field through the interaction lagrangian

LI = −λ

2
χtr (FµνFµν) ,

with Fµν = F a
µνt

a, the gluon field strength F a
µν =

[
∂µA

a
ν −

∂νA
a
µ − gfabcAb

µA
c
ν

]
, the gluon field Aa and the SU(Nc)

group generators in the adjoint representation ta. In the
high-energy limit, the scattering of a χ-particle off an ex-
ternal color field Aa as shown in Fig. 1a, has the follow-
ing amplitude:

T a(b⊥) =
iλq0
2CA

∫
dx+tr

[
ta(ε∗⊥∂⊥)AA

−(x+, b⊥)
]
.

1 Note that the expressions “LO” and “NLO” gluon distri-
bution do not refer to the order of expansion of the splitting
functions in DGLAP evolution. LO (respectively NLO) distri-
bution corresponds to one (respectively two) gluon(s) in the
final state, calculated in the large-Q2 and small-x limit.
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Fig. 1. The process χ → g in an external color field: a one
gluon exchange, b resummed gluon exchange

�

�

�

Fig. 2. The process χg → g in the parton model

Here b⊥ denotes the impact parameter in transverse space,
q the four momentum vector of the χ-particle, x+ = x0 +
x3 the light-cone variable, ∂⊥ ≡ ∂/∂b⊥, AA = Abtb the
external color field, CA = Nc the Casimir operator in the
adjoint representation, Nc the number of colors and ε⊥ the
polarization vector of the outgoing gluon.

Resumming the gluon exchange to all orders as shown
in Fig. 1b, the gluon initially created at the vertex χgg
acquires a non-abelian eikonal factor on the way through
the external color field

UA
(∞,x+)(b⊥) = P exp

[
− ig

2

∫ ∞

x+

dx+A
A
−(x+, b⊥)

]
.

The path ordering along the way x+ is denoted by P . With

WA
b⊥(rA) = UA(b⊥ − rA/2)UA†(b⊥ + rA/2) − � , (1)

where the eikonal factors UA(b⊥ − rA/2) ≡ UA
∞,−∞(b⊥ −

rA/2) and UA†(b⊥+rA/2) come from the scattering of two
gluons (moving in opposite directions) with transverse dis-
tance rA off the proton, the semiclassical (sc) cross section
for gluon production at leading order becomes (cf. [1])

σ(0)
sc =

λ2

4g2CA

∫
d2b⊥

∣∣∣[∂rAW
A
b⊥(rA)

]
rA=0

∣∣∣2 . (2)

In the following an average over the external color fields
underlying the quantity WA

b⊥ is implicitly understood.
On the other hand, the leading order parton model

(pm) cross section for the partonic process χg → g shown
in Fig. 2 with the proton described by the gluon distribution
is given by

σ(0)
pm =

πλ
4
xg(0)(x,Q2). (3)

Identifying the semiclassical cross section (2) with the par-
tonic one (3), one finds the leading order gluon distribution

xg(0)(x,Q2) =
1

2π2αs

1
2CA

∫
d2b⊥

∣∣∣[∂rAW
A
b⊥(rA)

]
rA=0

∣∣∣2 .
(4)

Using the expression for the adjoint dipole (d)–proton (p)
cross section in the semiclassical approach [1, 10]

σdp
sc (rA) = −2

3

∫
d2b⊥ tr WA

b⊥(rA) (5)
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and the identity∫
d2b⊥

∣∣∣[∂rAW
A
b⊥(rA)

]
rA=0

∣∣∣2

= −
[
∂2

rA

∫
d2b⊥trWA

b⊥(rA)
]

rA=0
, (6)

one can rewrite (4) in the useful form

xg(0)(x,Q2) =
3

4π2αs

1
2CA

[
∂2

rAσ
dp
sc (rA)

]
rA=0 . (7)

This equation shows that the LO gluon distribution de-
pends on the small distance behavior of the adjoint dipole–
proton cross section. To get numerical results for the gluon
distribution, we use in the next section a model to compute
the adjoint dipole–proton cross section.

2.2 Gluon distribution at next-to-leading order

For the semiclassical calculation of the gluon distribution
at next-to-leading order, the three diagrams shown in Fig. 3
are relevant in the high-energy limit. Resumming the inter-
action with the external field to all orders, i.e., repeating
the step leading from Fig. 1a to Fig. 1b, we obtain the re-
sult shown in Fig. 4. In the first diagram the incoming
χ-particle splits into two gluons before interacting with
the target. The subsequent scattering of the two gluons off
the external color field is treated in the eikonal approx-
imation. In the second diagram the two fast gluons are
created through a χggg vertex in the space-time region of
the external color field.

One can show [1] that the amplitudes in Fig. 4 produce
the following NLO contribution to the cross section:

σ(1)
sc (x,Q2) =

λ2

32(2π)6

∫
dα

α(1 − α)

∫
dk′2

⊥

∫
d2b⊥ (8)

×
∣∣∣∣
∫

d2k⊥
N2δij + 2kikj

N2 + k2
⊥ +m2

G

W̃A
b⊥(k′

⊥ − k⊥)
∣∣∣∣
2

,

where α and 1−α are the longitudinal momentum carried
by the two gluons, k⊥ and k′

⊥ are the transverse momenta
of one of the two gluons before and after the interaction
with the external field, N2 = α(1 − α)Q2 and W̃A

b⊥(k⊥) is
the Fourier transform of WA

b⊥(rA) given in (1).

� �

Fig. 3. Diagrams contributing to the χ → gg amplitude in the
high-energy limit

�

Fig. 4. Relevant contributions in the NLO semiclassical cal-
culation

� �

Fig. 5. Diagrams contributing to the parton model at NLO

In (8) we have introduced a gluon mass mG into the
gluon propagator. This mass mimics the confinement of
the two gluons emerging from the χ-particle and modifies
their perturbative wave function in the non-perturbative,
small k⊥ region for small virtualities Q2 or momentum
fractions α = 0, 1. Phenomenologically, the gluon mass
has a similar effect as a constituent quark mass in the per-
turbative quark–antiquark wave function of the transverse
photon [11]. We use for the gluon mass mG = 770 MeV,
i.e., approximately half of the glueball mass.

To compute the NLO contribution to the gluon dis-
tribution in the parton model, we have to calculate the
diagrams shown in Fig. 5. With z = Q2/(Q2 + s) = x/y,
where y is the fraction of the target momentum carried
by the struck gluon, the parton model cross section at
NLO reads

σpm(x,Q2) =
∫ 1

x

dz
z

[
σ

(0)
d δ(1 − x) + σ̂(1)(x,Q2)

]
ygb(y),

(9)
with σ

(0)
d = (πλ2

d)/4 and the d = (4 + ε) dimensional
coupling λd = λµ−ε/2. Since we are interested in the high-
energy limit, we extract only the leading term in ln(1/x)
from the expression in (9). We regularize the bare gluon
distribution gb(x) in the MS scheme:

gb(x) = g(x, µ2)

− αs

2π

∫ 1

x

dz
z
Pgg(z)

[
2
ε

+ γE − ln(4π)
]
g(y, µ2),

with Pgg denoting the gluon-gluon splitting function. The
parton model cross section at NLO finally becomes

σpm = σ
(0)
d=4x

∫ 1

x

dz
z
g(y, µ2) (10)

×
{
δ(1 − z) +

αs

2π

[
Pgg(z) ln

(
Q2

µ2

)
+ CMS

g (z)
]}

,

where

CMS
g (z) = Pgg(z) ln

(
1 − z

z

)
− 11CA

6z(1 − z)
.

Expanding the full gluon distribution up to the order
ln(1/x)

xg(x, µ2) = xg(0)(x, µ2) + xg(1)(x, µ2),

and identifying (8) with (10), we obtain

xg(1)(x, µ2)



66 H.J. Pirner et al.: Log(1/x) gluon distribution and structure functions in the loop–loop correlation model

=
1

4(2π)7

∫
dα

α(1 − α)

∫
dk′2

⊥

∫
d2b⊥ (11)

×
∣∣∣∣
∫

d2k⊥
N2δij + 2kikj

N2 + k2
⊥ +m2

G

W̃A
b⊥(k′

⊥ − k⊥)
∣∣∣∣
2

− αs

2π

∫ 1

x

dz
[
Pgg(z) ln

(
Q2

µ2

)
+ CMS

g (z)
]
yg(0)(y, µ2) ,

where g(0)(x, µ2) is given by (4). When evaluating (11),
we keep only ln(1/x) terms, i.e., we use

Pgg(z) ≈ 2CA
z

,

CMS
g (z) ≈ 2CA

z

[
ln

(
1
z

)
− 11

12

]
.

Using the variable z = Q2/(Q2 + M2), with M2 = k′2
⊥/

(α(1 −α)), and introducing a scale κ2 such that Λ2
QCD �

κ2 � Q2, the first contribution in (11) can be split into a
hard and a soft component [1, 10]

1
4(2π)7

∫
dα

α(1 − α)

∫
dk′2

⊥

∫
d2b⊥

×
∣∣∣∣
∫

d2k⊥
N2δij + 2kikj

N2 + k2
⊥ +m2

G

W̃A
b⊥(k′

⊥ − k⊥)
∣∣∣∣
2

=
1

4π3

∫ 1

x

dz
z

ln
(
Q2

zκ2

) ∫
d2b⊥

∣∣∣[∂rAW
A
b⊥(rA)

]
rA=0

∣∣∣2

+
2
π

∫ 1

x

dz
z

∫ κ2

0
dk′2

⊥ f(k′2
⊥) , (12)

where

f(k′2
⊥) =

∫
d2rA

(2π)2r2A

∫
d2r′

A
(2π)2r′2

A

∫
d2b⊥

×tr
[
WA

b⊥(rA)WA†
b⊥ (r′

A)
]
eik′

⊥(rA−r′
A)H(rA, r′

A),

H =
(rA · r′

A)2

r2Ar
′2
A

[
â2K0(â)

] [
b̂2K0(b̂)

]

+
1
2

[
2(rA · r′

A)2

r2Ar
′2
A

− 1
]

×
{

[âK1(â)]
[
b̂K1(b̂)

]
+ [âK1(â)]

[
b̂2K0(b̂)

]
+

[
â2K0(â)

] [
b̂K1(b̂)

]}
,

with â = mGrA and b̂ = mGr
′
A. Note that the gluon mass

does not influence the hard part which is calculated at
leading twist. The lower bound of the z integration, x ≤ z,
is a kinematical limit ensuring that the invariant mass of
the two produced gluons cannot be larger than the total
center-of-mass energy available [1, 10].

Inserting (12) in (11), the ln2(1/x) terms from the semi-
classical and the parton calculations cancel, so that

xg(1)(x, µ2) = ln
(

1
x

)

×
{

2
π

∫ κ2

0
dk′2

⊥ f(k′2
⊥) +

αs

π
CA

[
ln

(
κ2

µ2

)
+

11
12

]
xg(0)

}
.

For κ2 = µ2 exp(11/12), the second term also drops out,
and one obtains

xg(1)(x, µ2) =
2
π

ln
(

1
x

) ∫ e11/12µ2

0
dk′2

⊥ f(k′2
⊥). (13)

After the integration over k′2
⊥ and r′

A, the NLO correction
to the gluon distribution becomes [1, 10]

xg(1)(x, µ2) =
1

2π3 ln
(

1
x

) ∫ ∞

r2
0(µ2)

dr2A
r2A

m2
G F (mGrA)

×
∫

d2b⊥tr
[
WA

b⊥(rA)WA†
b⊥ (rA)

]
, (14)

where

r20(µ
2) =

4e
1
12 −2γE

µ2 ,

F (z) = K2
1 (z) + zK0(z)K1(z) +

z2

2
K2

0 (z)

=
z2

2
K2

2 (z) − zK1(z)K2(z) +K2
1 (z).

In the large-Nc limit [12], one obtains the relation∫
d2b⊥tr

[
WA

b⊥(rA)WA†
b⊥ (rA)

]
= −2

∫
d2b⊥ tr WA

b⊥(rA),

which allows us to rewrite the NLO correction in terms of
the dipole–proton cross section (5)

xg(1)(x, µ2)=ln
(

1
x

)
3m2

G

2π2

∫ ∞

r2
0(µ2)

dr2A
r2A

F (mGrA) σdp
sc (rA).

(15)

The NLO gluon distribution depends on the large distance
behavior of the adjoint dipole–proton cross section. For
small rA the function F (mGrA) reduces to 1/(mGrA)2,
and (15) shows qualitative agreement with (49)–(50) of
Mueller [2]. To obtain numerical results for the LO and
NLO gluon distribution, we calculate the dipole–proton
cross section at some low CM energy

√
s0 within the loop–

loop correlation model in the following section.

3 Dipole–proton cross section
from the loop–loop correlation model

In this section we use the loop–loop correlation model
(LLCM) [3] to compute the cross section of an adjoint
dipole scattering off a proton, σdp

sc (rA, s0), at the CM en-
ergy

√
s0 = 20 GeV. Then, we insert the resulting dipole–

proton cross section in (7) and (15) to calculate the LO
and NLO gluon distributions.



H.J. Pirner et al.: Log(1/x) gluon distribution and structure functions in the loop–loop correlation model 67

The loop–loop correlation model is based on the func-
tional integral approach to high-energy scattering in the
eikonal approximation [4–7]. Its central elements are gauge-
invariant Wegner–Wilson loops. With a phenomenological
energy dependence, we have shown that the LLCM al-
lows a unified description of high-energy hadron–hadron,
photon–hadron, and photon–photon reactions [3, 13, 14]
and of static properties of hadrons [15, 16] in agreement
with experimental and lattice data. In this work, we do
not need a phenomenological parameterization for the en-
ergy dependence, since this is generated by the formalism
outlined in the sections before.

In the framework of LLCM the adjoint dipole–proton
cross section reads [3, 13]

σdp
LLCM(rA, s0) = 2

∫
d2b⊥

∫
dφA
2π

∫
d2rFdzq|ψp(zq, rF )|2

×
(
1 − SA F (s0,b⊥, rA, zq, rF )

)
. (16)

Here the correlation of two light-like Wegner–Wilson loops,

SA F (s0,b⊥, rA, zq, rF ) =

〈
WA[Cg]WF [Cq]

〉
G〈

WA[Cg]
〉

G

〈
WF [Cq]

〉
G

,

(17)
describes the elastic scattering of a dipole in the fundamen-
tal (F) with a dipole in the adjoint (A) representation of
SU(Nc). In the present case where a χ-particle scatters off
a proton, the adjoint color-dipole is given by the two gluons
in the color-singlet state emerging from the χ-particle and
the fundamental color-dipole is given in a simplified picture
by a quark and diquark in the proton2. Each color-dipole
is represented by a light-like Wegner–Wilson loop [18]

Wr[C] = T̃rr P exp
[
−ig

∮
C

dzµAa
µ(z) tar

]
,

where the subscript r indicates the representation of
SU(Nc), T̃rr = Trr(. . .)/Tr�r is the normalized trace
in the corresponding color-space with unit element �r,
and Aµ(z) = Aa

µ(z)tar represents the gluon field with the
SU(Nc) group generators in the corresponding representa-
tion, tar , that demand the path ordering indicated by P on
the closed path C in space-time. Physically, the Wegner–
Wilson loop represents the phase factor acquired by a color-
charge in the SU(Nc) representation r along the light-like
trajectory C in the gluon background field.

The color dipoles have transverse size and orientation
rA,F . The longitudinal momentum fraction of the dipole
carried by the quark (gluon) is zq (zg). The impact param-
eter between the dipoles is [19]

b⊥ = rg + (1 − zg)rA − rq − (1 − zq)rF = rA cm − rF cm ,

2 The proton has in fact a three-quark structure and is de-
scribed by three dipoles [7,17] instead of a quark–diquark dipole
as done here. However the quark–diquark description simplifies
enormously the model and gives similar results as the three-
dipole picture once the model parameters are readjusted [7].
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Fig. 6. High-energy scattering of a fundamental dipole with
an adjoint dipole in the eikonal approximation represented by
Wegner–Wilson loops: a space-time and b transverse arrange-
ment of the Wegner–Wilson loops. The shaded areas represent
the strings extending from the quark (gluon) to the diquark
(antigluon) path in each color dipole. The thin tube allows
one to compare the field strengths in surface Sq with the field
strengths in surface Sg. The impact parameter b⊥ connects
the centers of light-cone momenta of the dipoles

where rq, rqq, rg, and rḡ are the transverse positions of
the quark, diquark, gluon and the gluon moving in the
opposite direction, respectively. With rF = rqq − rq and
rA = rḡ − rg, the center of light-cone momenta of the
two dipoles are given by rA cm = zgrg + (1 − zg)rḡ and
rF cm = zqrq + (1 − zq)rqq. Figure 6 illustrates the (a)
space-time and (b) transverse arrangement of the dipoles.

The QCD vacuum expectation value 〈. . .〉G in the loop–
loop correlation function (17) represents functional inte-
grals [5] over gluon field configurations: the functional in-
tegration over the fermion fields has already been carried
out as indicated by the subscript G. The model we use for
the QCD vacuum describes only gluon dynamics and, thus,
implies the quenched approximation that does not allow
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string breaking through dynamical quark–antiquark pro-
duction.

The rF and zq distribution of the fundamental color-
dipole in the proton is given by the proton wave functionψp.
We use for the proton wave function the phenomenological
Gaussian Wirbel–Stech–Bauer ansatz [20]

ψp(zq, rF ) =

√
zq(1 − zq)
2πS2

pNp
e−(zq− 1

2 )
2
/(4∆z2

p) e−|rF |2/(4S2
p) .

The constant Np is fixed by the normalization of the wave
function to unity, the extension parameter Sp is approxi-
mately given by the electromagnetic radius of the proton,
and the width ∆zp = w/(

√
2mp) [20] is determined by the

proton massmp and the value w = 0.35–0.5 GeV extracted
from experimental data. We adopt the values ∆zp = 0.3
and Sp = 0.86 fm which have allowed a good description of
many high-energy scattering data in our previous work [3].

The computation of the loop–loop correlation for one
dipole in the fundamental and the other one in the ad-
joint representation of SU(NC) can be found in detail
in [13,15,16]. The main steps of this computation are the
transformation of the line integrals in the Wegner–Wilson
loops into surface integrals with the non-Abelian Stokes
theorem, a matrix cumulant expansion, and the Gaussian
approximation of the functional integrals in the gluon field
strengths. These steps lead to the following result:〈

WA[Cg]WF [Cq]
〉

G〈
WA[Cg]

〉
G

〈
WF [Cq]

〉
G

=
1

N2
c −1

exp
[
i
Nc

2
χ

]
+

Nc+2
2(Nc+1)

exp
[
−i

1
2
χ

]

+
Nc−2

2(Nc−1)
exp

[
i
1
2
χ

]
, (18)

which, for Nc = 3, corresponds to the well-known SU(3)
decomposition

3 ⊗ 8 = 3 ⊕ 15 ⊕ 6 .

The function χ := χP + χNP
nc + χNP

c has the following
form [3]:

χP =
[
g2(rg − rq) iD′ (2)

P (rg − rq)

+ g2(rḡ − rqq) iD′ (2)
P (rḡ − rqq)

− g2(rg − rqq) iD′ (2)
P (rg − rqq)

− g2(rḡ − rq) iD′ (2)
P (rḡ − rq)

]
, (19)

χNP
nc =

π2G2(1−κ)
3(N2

c − 1)

[
iD′ (2)

1 (rg − rq)+ iD′ (2)
1 (rḡ − rqq)

− iD′ (2)
1 (rg − rqq) − iD′ (2)

1 (rḡ − rq)
]
, (20)

χNP
c =

π2G2κ

3(N2
c − 1)

(rA · rF ) (21)

×
∫ 1

0
dvA

∫ 1

0
dvF iD(2) (rg + vArA − rq − vFrF) ,

with the perturbative (iD′ (2)
P ) and non-perturbative (iD′ (2)

1
and iD(2)(z⊥)) correlation functions in transverse space

iD′ (2)
P (z⊥) =

1
2π
K0 (mG|z⊥|) , (22)

iD′ (2)
1 (z⊥) = πa4[3+3(|z⊥|/a)+(|z⊥|/a)2

]
exp(−|z⊥|/a) ,

(23)

iD(2)(z⊥) = 2π a2 [1 + (|z⊥|/a)] exp(−|z⊥|/a) . (24)

We have introduced in the perturbative component χP the
same effective gluon massmG = 0.77 GeV as before to limit
the range of the perturbative interaction in the infrared
region and a parameter M2 = 1.04 GeV2 which freezes the
running coupling in the quenched approximation at the
value g2(z⊥)/(4π) = αs(k2

⊥ = 0) = 0.4 [3],

g2(z⊥) =
48π2

(33 − 2Nf ) ln
[
(|z⊥|−2 +M2)/Λ2

QCD

] . (25)

In (22) K0 denotes the 0th modified Bessel function (Mc-
Donald function). The non-perturbative correlators (20)
and (21) involve the gluon condensate

G2 := 〈 g
2

4π2F
a
µν(0)F a

µν(0)〉 = 0.074 GeV4 ,

the parameter κ = 0.74 that determines the relative weight
of the two different components and the correlation length
a = 0.302 fm that enters through the non-perturbative
correlation functions D and D1.

The component χP describes the perturbative interac-
tion of the quark and diquark of the dipole in the proton
with the two gluons of the adjoint dipole emerging from
the χ-particle as evident from (19) and Fig. 6b. The com-
ponent χNP

nc has the same structure as χP and gives the
non-perturbative interaction between the quarks and glu-
ons of the two dipoles. The component χNP

c shows a differ-
ent structure: the integrations over vA and vF sum non-
perturbative interactions between the strings (flux tubes)
confining the quark and diquark or the two gluons in the
dipoles as visualized in Fig. 6b. As shown in [15, 21, 22],
the χNP

c component leads to color confinement due to a
flux tube formation between a static quark–antiquark pair.
Manifestations of confinement in high-energy scattering
have been analyzed in [14].

Since the squared proton wave function |ψp(zq, rF )|2
is invariant, and the χ-function changes sign under the
replacement (rF → −rF , zq → 1 − zq):

χ(b⊥, zg, rA, 1 − zq,−rF ) = −χ(b⊥, zg, rA, zq, rF ) ,

only the real part of the exponentials in (18) survives in
the integration over rF and zq, so that one obtains〈

WA[Cg]WF [Cq]
〉

G〈
WA[Cg]

〉
G

〈
WF [Cq]

〉
G
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=
1

N2
c −1

cos
[
Nc

2
χ

]
+

Nc+2
2(Nc+1)

cos
[
1
2
χ

]

+
Nc−2

2(Nc−1)
cos

[
1
2
χ

]
. (26)

The above expression describes multiple gluonic interac-
tions between two dipoles since (χP)2 represents the per-
turbatively well-known two-gluon exchange and (χNP)2 the
non-perturbative two-point interaction in the dipole-dipole
scattering [14]. The higher order terms in the expansion
of the cosine functions ensure the S-matrix unitarity con-
dition which becomes important at very high CM ener-
gies [3, 13,23].

The adjoint dipole–proton cross section obtained with
the above ingredients at the CM energy

√
s0 ≈ 20 GeV

shows color-transparency for small dipole sizes,

σdp
LLCM(s0, rA) ≈ 9.6 r2A (27)

and linear confining behavior at large dipole sizes,

σdp
LLCM(s0, rA) ∝ |rA| . (28)

Inserting (27) and (25) into (7), one obtaines for the LO
gluon distribution (7) at virtuality Q2

0 = 1.8 GeV2

xg(0)(x,Q2
0) =

3
4π2αs(Q2

0)
1

2CA
2 · 9.6 = 0.81 . (29)

With our result for σdp
LLCM(s0, rA), the NLO gluon distri-

bution (15) at the same virtuality reads

xg(1)(x,Q2
0) = 0.89 ln

(
1
x

)
. (30)

4 DGLAP evolution at high Q2

In this section we give the gluon and quark distributions
at an initial scale Q2

0. Their evolution to higher values of
Q2 is obtained by the DGLAP equation

Q2∂Q2


qi(x,Q2)
q̄i(x,Q2)
g(x,Q2)


 (31)

=
αs

2π

∫ 1

x

dξ
ξ


Pqiqj

0 Pqig

0 Pqiqj
Pqig

Pgq Pgq Pgg




∣∣∣∣∣∣
x
ξ


qj(ξ,Q2)
q̄j(ξ,Q2)
g(ξ,Q2)


 ,

with the splitting functions Pxy being at leading order
Q2 independent. We use the resulting gluon and quark
distributions to compute the charm and proton structure
function at different x and Q2 values.

The gluon distribution computed in the previous sec-
tion reads

xg(x,Q2
0) = A [1 +B ln(1/x)] , (32)

with A = 0.81 and B = 1.1 for Q2
0 = 1.8 GeV2. Our result,

however, is only expected to be valid at low x values. For
large x values, x > xGRV = 0.15, we use the Gluck–Reya–
Vogt (GRV) gluon distribution [24]. To match to this gluon
distribution at x = xGRV, we introduce a scale x0 in our
gluon distribution,

G(x,Q2
0) = xg(x,Q2

0) = A [1 +B ln(x0/x)] , (33)

which takes into account the neglected constant term in
the NLO calculation where only the leading ln(1/x) terms
have been kept. For Q2

0 = 1.8 GeV2 and xGRV = 0.15, we
obtain x0 = 0.1454.

To calculate the proton structure function F p
2 (x,Q2),

F p
2 (x) = x

∑
flavors

e2q [q(x) + q̄(x)] ,

with the DGLAP evolution (31), we need quark and gluon
distributions, since they are coupled to each other. For
the computation of F p

2 (x,Q2), however, only two linear
combinations of quark distributions are required:

T = x(u+ + c+ + t+) − x(d+ + s+ + b+),

Σ = x(u+ + c+ + t+) + x(d+ + s+ + b+),

since

F p
2 =

5Σ + 3T
18

,

with q+ = q + q̄ and q = u, d, s, c, t, b. Performing linear
combinations in (31), we can directly check that T , Σ and
G evolve according to the following DGLAP equations:

Q2∂Q2T (x,Q2) =
αs

2π

∫ 1

x

xdξ

ξ2
Pqq

(
x

ξ

)
T (ξ,Q2),

Q2∂Q2

(
Σ(x,Q2)
G(x,Q2)

)

=
αs

2π

∫ 1

x

xdξ
ξ2

(
Pqq 2nfPqg

Pgq Pgg

)∣∣∣∣
x
ξ

(
Σ(ξ,Q2)
G(ξ,Q2)

)
,

which means that T evolves alone, while Σ is coupled
with G.

We determine the x-dependence of the T and Σ distri-
bution at the scale Q2

0 following the ideas from [25]. First,
the T , Σ and G distributions are required to have a com-
mon singularity structure in the complex j-plane according
to Regge theory. Since the initial gluon distribution (33)
has a double pole in j = 1, consequently, also the T and Σ
distribution are required to have a double-pole pomeron
term. Secondly, we add a reggeon contribution (coming
from the exchange of meson trajectories a0 and f) to the
quark distribution. In the gluon distribution we neglect
this term since the reggeon is expected to be constituted
of quarks. Moreover, we expect that the pomeron, having
vacuum quantum numbers, does not distinguish between
quark flavors, i.e., the pomeron decouples from the T distri-
bution. In contrast, the Σ distribution contains a pomeron
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and a reggeon component. The initial distributions, thus,
read

T (x,Q2
0) = τxα0(1 − x)σ, (34)

Σ(x,Q2
0) = [a ln(1/x) + b+ dxα0 ] (1 − x)κ,

with the reggeon intercept α0 = 0.4 and the powers σ = 3
and κ = 2 of (1 − x) taking into account daughter trajec-
tories in Regge theory. For x > xGRV, we again rely on
the GRV distributions since our T and Σ distributions are
only valid at small x. The parameters τ and b are fixed
to ensure continuity between our distributions and GRV’s
ones at x = xGRV. Finally, we are left with two parame-
ters, a and d, which we determine by fitting the F p

2 (x,Q2)
experimental data.

5 Results

With the previous T , Σ and G distributions at Q2
0 =

1.8 GeV2 as an initial condition in the DGLAP equation,
we have fitted the F p

2 experimental data within the domain

Q2 ≥ Q2
0 = 1.8 GeV2 ,

x ≤ xGRV = 0.15 , (35)

cos(θt) =

√
Q2

2xmp
≥ 49 GeV2

2m2
p

.

Heremp denotes the proton mass, θt is the scattering angle
in the t-channel and cos(θt) has been extended to the whole
complex plane. The last condition of cos(θt) taken from [26]
ensures that Regge theory is applicable. We have used 922
experimental points coming from H1 [27–29], ZEUS [30,
31], BCDMS [32], E665 [33] and NMC [34] to adjust our
parameters within the given region. We have obtained the
following values:

a = 0.45933 ± 0.00425 ,

b = −1.9598 (fixed by continuity) ,

d = 6.0408 ± 0.0456 ,

τ = 0.55628 (fixed by continuity) .

In Figs. 8, 9 and 10 we show the results for the proton
structure function, F p

2 (x,Q2), as a function of the Bjorken
variable x between the virtualities Q2 = 1.8 GeV2 and
Q2 = 3000 GeV2. Our results are in good agreement with
experimental data for all x and Q2 values.

To test our gluon distribution, we compute the charm
structure function which depends on the gluon distribution
as follows [35]:

F c
2 (x,Q2) =

2e2c
αs(Q2 + 4m2

c)
2π

∫ 1

ax

dξ g(ξ,Q2 + 4m2
c)f(x/ξ,Q2) ,
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Fig. 7. The charm structure function, F c
2 (x, Q2), as a function

of the Bjorken variable x at different virtualities Q2

with

f(x,Q2) = v

[(
4 − µ)x2(1 − x) − x

2

]

+L
[
x

2
− x2(1 − x) + µx2(1 − 3x) − µ2z3

]
,

µ =
2m2

c

Q2 ,

v =

√
1 − 2xµ

1 − x
,
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Fig. 8. The proton structure function, F p
2 (x, Q2), as a function of the Bjorken variable x at low virtualities Q2

L = log
(

1 + v

1 − v

)
,

a = 1 + 2µ .

We have adopted a value of 1.25 GeV for the charm quark
mass. The predictions for F c

2 (x,Q2) obtained from our
model are presented together with the experimental HERA
data [30,36,37] in Fig. 7. The good agreement of our predic-
tions for F c

2 (x,Q2) with experimental data clearly shows
that we obtain a reasonable gluon distribution.

6 Conclusions

We have considered the interaction of a scalar “photon”,
which directly couples to the gluons, with an external color
field to extract the leading and next-to-leading order gluon

distribution. We have closely followed the previous work
by Dosch, Hebecker, Metz and Pirner [1], in which the
semiclassical approach (where the partonic fluctuations of
the “photon” interact with the proton in the eikonal ap-
proximation) has been compared with the parton model
to get the gluon distribution of the proton. The leading
order result is a constant, while the next-to-leading order
result has a ln(1/x) rise at small x.

We have been able to relate the leading and next-to-
leading order gluon distribution to the short and long dis-
tance behavior of the cross section of a dipole in the adjoint
representation of SU(3) scattering off a proton, respec-
tively. In addition, a gluon mass has been introduced to take
into account non-perturbative effects in the small-k⊥ region
of the perturbatively derived wave function of the two glu-
ons emerging from the scalar “photon”, in analogy to the
constituent quark mass in the quark–antiquark wave func-
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Fig. 9. The proton structure function, F p
2 (x, Q2), as a function of the Bjorken variable x at middle-range virtualities Q2
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Fig. 10. The proton structure function, F p
2 (x, Q2), as a function of the Bjorken variable x at high virtualities Q2
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tion. We have computed the adjoint dipole–proton cross
section in the loop–loop correlation model [3] to obtain
numerical results for the gluon distributions at the initial
scale Q2

0 = 1.8 GeV2.
Quark distributions at the same initial scale have been

parameterized in line with Regge theory and the ideas lead-
ing to the gluon distribution. We have used DGLAP equa-
tions to evolve quark and gluon distributions to higher Q2

values. The charm and proton structure functions com-
puted in the small-x region are in good agreement with
experimental HERA data over a large range of Q2 values.
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